New preprint: Mutational processes of tobacco smoking and APOBEC activity generate protein-truncating mutations in cancer genomes
We posted a new preprint on bioRxiv. We analysed the protein-coding impact of single base substitution signatures in 12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) were strongly enriched in the signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen species. Our study exposes SGM expansion as a genetic mechanism by which endogenous and carcinogenic mutational processes contribute to protein loss-of-function, oncogenesis, and tumor heterogeneity, providing potential translational and mechanistic insights.